AS ENERGIAS DE COMPENSAÇÃO NECESSÁRIAS NO PARCELAMENTO DE

DIAGRAMAS

DE CARGA*

1 - Introdução.

1.1. - Notações.

E — energia

E_c — energia de compensação

 E_t — energia total

m — potência mínima ou de base

m — potência média

M potência máxima ou de ponta

N — potência

N(t) — diagrama de cargas

N(τ) — diagrama de duração de potências

t — instante em que se verifica a potência N

duração da potência N

T — duração da potência média m

 $\theta = m/M$ — factor de carga

Estas notações serão afectadas dos indices s, p ou b quando se referirem aos diagrama de carga «soma», «ponta» ou «base».

1.2 - Objecto do estudo.

Considere-se um diagrama de cargas $N_s(t)$ que se pretende parcelar em dois diagramas de carga $N_p(t)$ e $N_b(t)$ a que se convenciona chamar de ponta e de base respectivamente. A distinção entre estes diagramas de carga é feita pelos factores de carga, sendo $\theta_b \gg \theta_p$. As energias de compensação correspondentes a cada um dos diagramas de carga considerados isoladamente são E_{cs} , E_{cp} e E_{cb} .

Formula-se a seguinte questão: a que condições deve satisfazer o parcelamento de $N_s(t)$ em $N_p(t)$ e $N_b(t)$ para que $E_{cp} + E_{cb}$ seja mínima?

Para resolver este problema torna-se necessário analisar as propriedades das curvas N(t) e $N(\tau)$.

2 — Algumas propriedades dos diagramas de carga e das respectivas curvas de duração de potência.

2.1 — Dada a curva $N_s(t)$, definida num intervalo de tempo que se toma para unidade, seja feito o seu parcelamento em $N_p(t)$ e $N_b(t)$ em todo aquele intervalo; em cada instante t tem-se (fig. 1)

$$N_s(t) = N_p(t) + N_b(t)$$

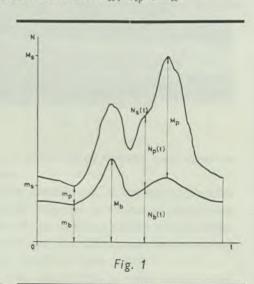
Considere-se agora a curva $N_s(\tau)$, que é monotónica decrescente; se o seu diagrama for parcelado em dois, $N_b(\tau)$ e $N_p(\tau)$, também monotónicos decrescentes (fig. 2), será ainda e sempre

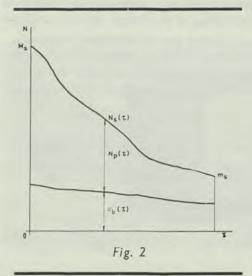
$$N_s(\tau) = N_p(\tau) + N_b(\tau)$$
 ?

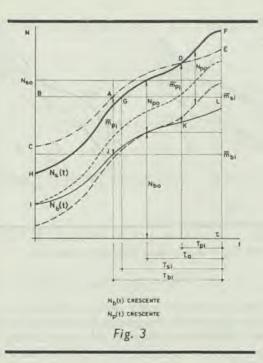
Isto é, sendo $N_b(\tau)$ e $N_p(\tau)$ potências com a duração τ , terá $N_b+N_p=N_s$ também a duração τ ?

Considere-se, em primeiro lugar, o diagrama de cargas $N_s(t)$ parcelado como mostra a fig. 1; em cada instante t as funções N_s , N_p e N_b têm o mesmo sentido de crescimento. Desta circunstância resulta imediatamente a simultaneidade dos máximos e mínimos relativos, mas não será obrigatòriamente $M_s = M_b + M_p$ e $m_s = m_b + m_p$. No caso da fig. 1 é $m_s = m_b + m_p$ e $M_s < M_b + M_p$.

^{*} Extraído do Relatório do 2º tirocínio do I.S.T.







Este facto põe em evidência o seguinte: a soma das funções $N_b(\tau)$ e $N_p(\tau)$ para cada τ não é a curva de durações correspondente à soma dos diagramas de carga $N_b(t)$ e $N_p(t)$ correspondentes àquelas funções, no caso da fig. 1.

2.2 — Considere-se um intervalo de tempo τ em que $N_s(t)$ é monotónica e decomponha-se o diagrama de tal modo que $N_p(t)$ e $N_b(t)$ tenham o mesmo sentido de crescimento de $N_s(t)$. É evidente que nestas circunstâncias as potências N_{bo} e N_{po} que têm a duração τ_o são tais que $N_{bo} + N_{po} = N_{so}$ tem a mesma duração τ_o (fig. 3).

2.3 — Nas figs. 4 está representado o caso em que $N_b(t)$ e $N_p(t)$ têm sentidos de crescimento contrários. Na fig. 4a vê-se que N_{b1} tem a duração τ_1 , N_{b1} a duração $\tau'_1 = \tau - \tau_1$ e que $N_{s1} = N_{b1} + N_{b1}$ tem a duração τ_1 ; e ainda que as potências N_{b2} e N_{p2} que têm a mesma duração τ_2 são tais que $N_{s2} = N_{p2} + N_{b2}$ tem uma duração $\tau'_2 < \tau_2$. Na fig. 4b reconhece-se que N_{b1} tem a duração $\tau'_1 = \tau - \tau_1$, N_{b1} a duração τ_1 e que $N_{s1} = N_{b1} + N_{b1}$ tem a duração τ_1 ; e ainda que as potências N_{b2} e N_{b2} que têm a mesma duração τ_2 são tais que $N_{s2} = N_{p2} + N_{b2}$ tem uma duração $\tau'_2 < \tau_2$.

2.4 — De 2.2 e 2.3 resulta que, dado um intervalo de tempo τ em que $N_s(t)$ é monotónica, é condição necessária e suficiente para que a soma das potências $N_b(t)$ e $N_p(t)$, com a mesma duração, tenha esta mesma duração, que as funções N(t) mencionadas sejam todas sempre crescentes ou sempre decrescentes. No caso de $N_b(t)$ e $N_p(t)$ terem sentidos de crescimento contrários, a soma das potências N_b e N_p que têm uma mesma duração é uma potência N_s com uma duração inferior a essa.

2.5 — Num diagrama de cargas normal há 2 máximos e 2 mínimos relativos; consequentemente há 5 intervalos em que a função $N_s(t)$ é monotónica. Se esse diagrama for decomposto em $N_b(t)$ e $N_p(t)$ de tal modo que:

- a) $M_s = M_p + M_b$,
- b) $m_s = m_b + m_b$,
- c) N_s(t), N_b(t) e N_p(t) tenham sempre o mesmo sentido de crescimento,
- a soma das curvas $N_b(\tau)$ e $N_p(\tau)$ é a curva $N_s(\tau)$.

As 3 condições consideradas em conjunto são necessárias e suficientes para que a soma seja legítima; mas isoladamente nenhuma delas é suficiente e só a da alínea a) é necessária.

As alineas b) e c) não são condições necessárias porque na decomposição de $N_s(t)$ em $N_b(t)$ e $N_p(t)$ pode haver 2 intervalos em que aconteça, num o caso da fig. 4a e no outro o caso da fig. 4b, e de tal modo que nos dois intervalos considerados em conjunto as potências N_{b1} , N_{p1} e $N_{s1} = N_{b1} + N_{p1}$ tenham todas a mesma duração τ .

Note-se, no entanto, que nos casos reais de decomposição de $N_s(t)$, as parcelas $N_b(t)$ e $N_p(t)$ não têm em cada instante sentidos de crescimento contrários. Como é este o caso normal, para que se possam adicionar as curvas $N_b(\tau)$ e $N_p(\tau)$ só é condição necessária a da alínea a), o que aliás é lógico; normalmente também será $m_b + m_b = m_s$.

2.6 — Sejam m_{bi} , m_{pi} e m_{si} as potências médias num intervalo i em que $N_s(t)$ é monotónica, e sejam T_{bi} , T_{pi} e T_{si} as respectivas durações. (Veja-se, por ex°, a fig. 3). É evidente que, se $T_{bi} = T_{si}$ ou $T_{pi} = T_{si}$, é $T_{bi} = T_{pi} = T_{si}$ quaisquer que sejam os sentidos de crescimentos dos N(t) naquele intervalo.

Tendo-se em atenção as notações da fig. 3, admita-se que $\overline{m_{bi}}$ tem $T_{bi} > T_{si}$; traçando por A uma paralela CE a $N_b(t)$, intersecta-se $N_s(t)$ em D, sendo a medida de DK igual a $\overline{m_{bi}}$; vê-se imediatamente que $T_{bi} < T_{si}$.

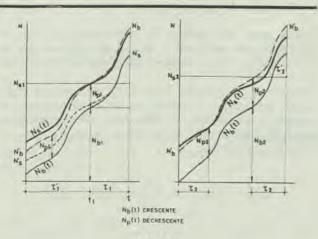


Fig. 4a

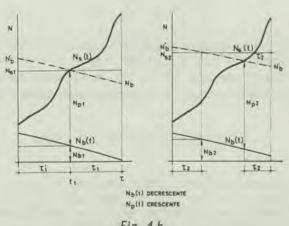
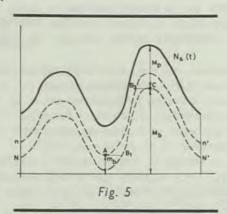


Fig. 4b

Não é possível serem T_{bi} e T_{pi} ambos menores (ou maiores) que T_{si} porque nessas circunstâncias $\overline{m_{bi} + m_{pi}}$ seria maior (ou menor) que $\overline{m_{si}}$, o que é absurdo.

Conclui-se que as durações das potências médias naquele intervalo são tais que $T_{bi} \leqslant T_{si} \leqslant T_{pi}$ ou $T_{pi} \leqslant T_{si} \leqslant T_{bi}$.

2.7 — Na decomposição de $N_s(t)$ em $N_b(t)$ e $N_p(t)$ com o mesmo crescimento e simultaneidade das potências máximas e mínimas acontece que tem de ser $m_b > m_s - M_p$. Com efeito, considere-se a curva $N_s(t)$ e curvas paralelas a $N_s(t)$ passando por M_b e m_b ; sejam elas NN' e nn' (fig. 5). A curva $N_b(t)$ tem de desenvolver-se na faixa (nn'N'N) para obedecer àquelas condições, resultando daí a desigualdade indicada.



3 - Energias de compensação.

3.1a) A soma das energias de compensação de $N_b(t)$ e $N_p(t)$ pode não ser igual à energia de compensação de $N_s(t) = N_b(t) + N_p(t)$, como se pode verificar através das figs. 6.

Considere-se em primeiro lugar a fig. 6a, em que $N_b(t)$ e $N_p(t)$ têm sempre o mesmo sentido de crescimento no intervalo i considerado. A área (A) = (B) representa a energia de compensação E_{cs} da soma. Sendo $T_{bi} = T_{pi} = T_{si} = T_i$ tem-se que

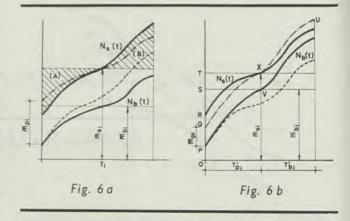
$$E_{csi} = \int_{\sigma}^{T_i} \left[N_s(t) - \overline{m}_{si} \right] dt = \int_{\sigma}^{T_i} \left[N_b(t) + N_p(t) - \overline{m}_{bi} - \overline{m}_{pi} \right] dt = \int_{\sigma}^{T_i} \left[N_b(t) - \overline{m}_{bi} \right] dt + \int_{\sigma}^{T_i} \left[N_p(t) - \overline{m}_{pi} \right] dt = E_{cbi} + E_{cpi}$$

3.1b) — Considere-se agora a fig. 6b em que no intervalo i considerado $N_b(t)$ e $N_p(t)$ têm sentidos de crescimento contrários; admitindo que m_{bi} e m_{si} têm a mesma duração T'_{bi} e que portanto m_{bi} tem a duração complementar T'_{bi} , é

$$E_{cbi} = \int_{0}^{T'pi} \left[\overline{m}_{bi} - N_{b}(t) \right] \cdot dt$$

$$E_{cpi} = \int_{0}^{T'pi} \left[N_{p}(t) - \overline{m}_{pi} \right] \cdot dt$$

$$E_{csi} = \int_{0}^{T'pi} \left[\overline{m}_{si} - N_{s}(t) \right] \cdot dt$$

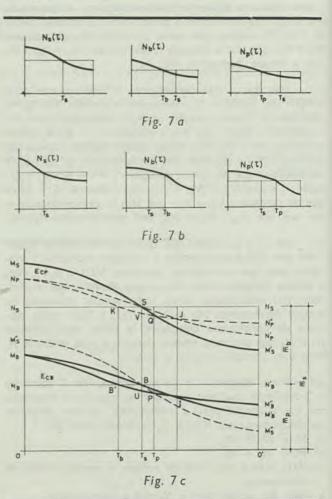


pelo que $E_{cbi} = E_{csi} + E_{cbi}$ e consequentemente

$$E_{csi} < E_{cbi} + E_{cbi}$$

3.2 — Nas condições em que é legítimo adicionar as curvas de duração de potência, o raciocínio feito em 3.1a) é válido em todo o domínio do diagrama de cargas. Só não seria se fosse, naquelas condições, $T_b \neq T_p$; mas como $\overline{m_s} = \overline{m_b + m_p}$ tem uma duração T_s , e como as curvas de duração são adicionáveis, $\overline{m_b}$ e $\overline{m_p}$ terão de ter durações iguais a T_s , portanto $T_b = T_p = T_s$.

3.3 — Considerem-se as curvas de duração representadas nas figs. 7.



Verificando-se as condições de 2.5, e só nesse caso, é:

$$E_{cs} = \int_{o}^{T_s} \left(N_s - \overline{m}_s \right) \cdot d\tau = \int_{o}^{T_s} \left(N_b + N_p \right) \cdot d\tau - \int_{o}^{T_s} \left(\overline{m}_b + \overline{m}_p \right) \cdot d\tau$$

$$= \int_{o}^{T_b} \left(N_b - \overline{m}_b \right) \cdot d\tau = \int_{o}^{T_b} N_b \cdot d\tau - \int_{o}^{T_b} \overline{m}_b \cdot d\tau$$

$$E_{cb} = \int_{o}^{T_p} \left(N_p - \overline{m}_p \right) \cdot d\tau = \int_{o}^{T_p} N_p \cdot d\tau - \int_{o}^{T_p} \overline{m}_p \cdot d\tau$$

3.3a) — Sendo T_b e T_p menores que T_s , (fig. 7a)

$$E_{cb} = \int_{0}^{T_{s}} N_{b} \cdot d\tau - \int_{T_{b}}^{T_{s}} N_{b} \cdot d\tau - \int_{0}^{T_{s}} \frac{T_{s}}{m_{b}} \cdot d\tau + \int_{T_{b}}^{T_{s}} d\tau + \int_{T_{b}$$

e por estes dois últimos integrais serem positivos é

$$E_{cb}+E_{cp}>E_{cs}$$

3.3b) — Sendo T_b e T_p maiores que T_s , (fig. 7b)

$$E_{cb} = \int_{0}^{T_{s}} N_{b} \cdot d\tau + \int_{T_{s}}^{T_{b}} N_{b} \cdot d\tau - \int_{0}^{T_{s}} \overline{m_{b}} \cdot d\tau - \int_{T_{s}}^{T_{b}} m_{b} \cdot d\tau$$

$$E_{cp} = \int_{0}^{T_{s}} N_{p} \cdot d\tau + \int_{T_{s}}^{T_{b}} N_{p} \cdot d\tau - \int_{0}^{T_{s}} \overline{m_{p}} \cdot d\tau - \int_{T_{s}}^{T_{p}} m_{p} \cdot d\tau$$

$$E_{cb} + E_{cp} = E_{cs} + \int_{T_{s}}^{T_{b}} (N_{b} - \overline{m_{b}}) \cdot d\tau + \int_{T_{s}}^{T_{p}} (N_{p} - \overline{m_{p}}) \cdot d\tau$$
(B)

e por estes dois últimos integrais serem positivos é

$$E_{cb}+E_{cp}>E_{cs}$$

3.3c) — Sendo
$$T_b < T_s < T_p$$
, (fig. 7c)

$$E_{cb} = \int_{0}^{T_{s}} N_{b} \cdot d\tau - \int_{T_{b}}^{T_{s}} N_{b} \cdot d\tau - \int_{0}^{T_{s}} \overline{m}_{b} \cdot d\tau + \int_{T_{b}}^{T_{s}} \overline{m}_{b} \cdot d\tau$$

$$E_{cp} = \int_{o}^{T_S} N_p \cdot d\tau + \int_{T_S}^{T_p} N_p \cdot d\tau - \int_{o}^{T_S} \overline{m}_p \cdot d\tau - \int_{T_S}^{T_p} \overline{m}_p \cdot d\tau$$

$$E_{cb} + E_{cp} = E_{cs} + \int_{T_b}^{T_s} (m_b - N_b) \cdot d\tau + \int_{T_s}^{T_p} (N_p - m_p) \cdot d\tau$$
(C)

pelo que mais uma vez se tem

$$E_{cb} + E_{cp} > E_{cs}$$

 $3.4 - \text{Se } T_b = T_p = T_s$, os integrais que figuram nas expressões (A), (B) e (C) anulam-se e fica, em qualquer dos

$$E_{cb} + E_{cb} = E_{cs}$$

3.5 - A fig 7c permite interpretar geomètricamente a expressão (C). Sejam:

$$M_SM'_S$$
 — a curva $N_s(\tau)$
 $M''_SM''_S$ — paralela a $M_SM'_S$ passando por B
 $M_BM'_B$ — a curva $N_b(\tau)$ quando $T_b = T_s$
 $M_SM'_S - M_BM'_B$ — a curva $N_p(\tau)$ quando $T_p = T_s$
 $N_SN'_S$ — a ordenada média de $M_SM'_S$
 $N_BN'_B$ — a ordenada média de $M_BM'_B$
 $N_PN'_P$ — a ordenada média de $M_SM'_S$ —

 $M_BM'_B$, obtida traçando por S uma paralela a M_BM_B' .

Quando $T_b = T_p = T_s$ é

$$E_{cs1} = \text{Área } (SM_SN_S)$$

 $E_{cb1} = \text{Área } (BM_BN_B)$
 $E_{cp1} = \text{Área } (SM_SN_P)$

e por construção é evidente que

$$E_{cb1} + E_{cp1} = E_{cs1}$$

Sendo $T_b < T_s$ e mantendo-se $M_b = OM_B$ e $m_b = ON_B$, a curva $M_B M'_B$ passa para $M_B M''_B$. Tem-se agora $m_b = \overline{PQ}$ com a duração $T_p > T_s$. As energias de compensação neste estado serão

$$E_{cb2} = \text{ Área } (B'M_BN_B) = \text{ Área } (KN_SN_P)$$

Como a curva NPN'P passou para NPN"P MBM"B tem-se

$$E_{cp2} = \text{Área } (QM_SN_P)$$

$$E_{cb2} + E_{cp2} = \text{ Área } (KN_SN_P) + \text{ Área } (QM_SN_P) =$$

= $\text{ Área } (SM_SN_S) + \text{ Área } (KSQ) =$
= $E_{cs1} + \text{ Área } (KSQ)$

reconhecendo-se fàcilmente que

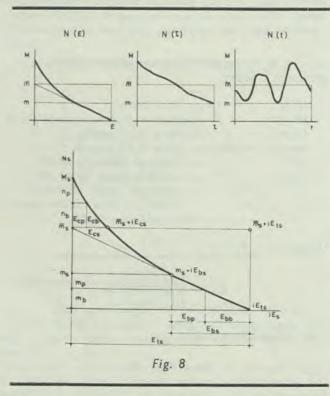
$$\text{Area } (KSQ) = \int_{-T_b}^{T_s} (\overset{-}{m_b} - N_b) \cdot d\tau + \int_{-T_s}^{T_p} (N_p - \overset{-}{m_p}) \cdot d\tau$$

3.6 — Sendo E_b a energia correspondente à potência m, é $E_{bb}+E_{bp}=E_{bs}$ desde que $m_b+m_p=m_s$, sendo condição suficiente para que tal se verifique que as potências m_b , m_p e m_s sejam simultâneas. Como $\overline{m}_b + \overline{m}_p = \overline{m}_s$ também é $E_{lb} + E_{lp} = E_{ls}$. A curva N(E) da fig. 8 representa a energia E medida no diagrama de carga ou na correspondente curva de duração de potências acima da recta de ordenadas iguais a N. Considerando os complexos

$$Z_s = N_s + i \cdot E_s$$

 $Z_b = N_b + i \cdot E_b$
 $Z_p = N_p + i \cdot E_p$

será sempre legitimo $Z_s = Z_b + Z_p$?



Havendo simultaneidade das potências mínimas, é certamente

$$m_s + i E_{bs} = (m_b + i E_{bb}) + (m_p + i E_{bp})$$

A igualdade seguinte é sempre válida:

$$\overline{m_s} + i E_{ts} = (\overline{m_b} + i E_{tb}) + (\overline{m_p} + i E_{tp})$$

Mas em que condições será

$$\overline{m}_s + i E_{cs} = (\overline{m}_b + i E_{cb}) + (\overline{m}_p + i E_{cp})$$
?

A condição para que se possam somar os complexos Z indicados é a da alínea 2.5.

Analisando a fig. 8, vê-se que E_{cb} e E_{cp} têm um máximo e um mínimo respectivamente, e vice-versa. Sendo $n_b = M_b - m_b$ e $n_p = M_p - m_p$, as energias de compensação E_{cb} e E_{cp} extremas obtêm-se marcando em $M_s - m_s$ aqueles valores, como na fig. 8 ou em posição contrária.

4 - Conclusões.

Na parcelação de um diagrama de cargas $N_s(t)$ em dois, $N_b(t)$ e $N_p(t)$, a soma das energias de compensação E_{cb} e E_{cp} de cada um dos diagramas parcela é igual ou maior que a energia de compensação E_{cs} do diagrama total. É condição necessária e suficiente para que se verifique a igualdade que $N_b(t)$ e $N_p(t)$ apresentem em cada instante t o mesmo sentido de crescimento e que as potências máximas e mínimas sejam simultâneas (nestas circunstâncias a duração das potências médias daqueles diagramas é a mesma).

C. E. DE BARROS VIDAL Engenheiro Civil (I.S.T.)

COMISSÃO NACIONAL PORTUGUESA DA CONFERENCE INTERNATIONALE DES GRANDS RESEAUX ELECTRIQUES (CIGRE)

A Conferência Internacional das Grandes Redes Eléctricas, mundialmente conhecida pelas suas iniciais CIGRE, reunirá o seu próximo Congresso, que será o 19º, de 16 a 26 de Maio próximo, como de costume, em Paris.

Nesta reunião, na qual serão apresentados 130 relatórios, prosseguirá o estudo dos grandes problemas tratados pela CIGRE no plano internacional, isto é, tudo o que se relaciona com a produção, a transformação e a distribuição da energia eléctrica em alta tensão.

Esse estudo incidirá principalmente sobre aiternadores, transformadores, interruptores, condensadores, subestações, de corte ou de transformação, óleos, cabos subterrâneos e submarinos, a concepção e o funcionamento das redes, as perturbações telefónicas e

radiofónicas, as teletransmissões, enfim sobre a construção e exploração de linhas de energia a grandes distâncias e a muito altas tensões, assim como a coordenação dos isolamentos.

No decorrer da sessão anterior, que se realizou em 1960, estiveram presentes 1908 técnicos, vindos de 50 países. É indiscutível que a reunião deste ano apresentará o mesmo interesse apaixonante das anteriores. Proseguir-se-á na rectificação dos diferentes pontos de vista e concepções que se opera de dois em dois anos, sempre do maior interesse.

Para informações e inscrições no Congresso, dirigir-se à COMISSÃO NACIONAL PORTUGUESA da CIGRE — Avenida Sidónio Pais, 24-1º — LISBOA (-).