Estudo do efeito de impedância de curtocircuito no comportamento dinâmico de um sistema de energia eléctrica.

Carlos M. B. Machado Ferreira^(*)

José Américo Dias Pinto^(*)

Fernando P. Maciel Barbosa^(**)

(*) Lab. SEE, Dep. Engenharia Electrotécnica Instituto Superior de Engenhaira de Coimbra Quinta do Nora, 3030 Coimbra

Summary

In this paper it is studied and analysed the influence of the fault arc in the transient stability of a multimachine electric power system. It was used the software package TRANsySTEM, developed by the authors to study the trasient stability of a power network. These computer programs that use the extended equal area criteria, were applied to a power system. Different values of the short-circuit impedance were considered. Finally, the results obtained with this formulation were compared with the solutions produced by the Runge--Kutta method, showing a very close agreement. (**) Dep. Engenharia Electrotécnica e de Computadores Faculdade de Engenharia da Universidade do Porto *Rua dos Bragas, 4099 Porto Codex*

Neste artigo apresenta-se a influência da impedância de curtocircuito no comportamento dinâmico de uma rede eléctrica. O arco eléctrico foi modelizado como uma resistência constante [4]. Neste estudo foi usado o pacote de "software" TRANsyTEM, desenvolvido pelos autores [5]. Estes programas computacionais utilizam o método de Newton-Raphson para calcular o estado inicial do sistema (antes da ocorrência da perturbação) e o das áreas iguais generalizado para estudar a estabilidade transitória [6]. A potência mecânica, o coeficiente de inércia e a força electromotriz de cada gerador foram considerados constantes durante o período de estudo da estabilidade transitória [7]. As cargas do sistema foram modelizadas como admitâncias constantes. Simulou-se um curtocircuito tripolar numa das linhas da rede eléctrica estudada e, para diferentes valores da impedância de arco, analisou-se o comportamento dinâmico do sistema. Os resultados obtidos foram comparados com as curvas de oscilação dos geradores, produzidos a partir dos valores calculados pelo método de integração numérica de Runge-Kutta.

Resumo

Este artigo analisa o efeito de impedância de curtocircuito no comportamento dinâmico de um Sistema de Energia Eléctrica (SEE). Foi usado o pacote de programas computacionais TRANsySTEM, desenvolvimento pelos autores para estudar a estabilidade transitória de uma rede eléctrica. O "software" desenvolvido utiliza o método das áreas iguais generalizado. Foi estudado o comportamento dinâmico de um Sistema de Energia Eléctrica, após a ocorrência de um curtocircuito tripolar com diferentes valores de impedância de arco. Os resultados obtidos foram comparados com a solução produzida pelo método de integração numérica de Runge-Kutta, tendo-se verificado uma concordância entre os valores calculados pelas duas fomulações.

1. Introdução

O estudo da estabilidade transitória permite simular e analisar o comportamento dinâmico do Sistema de Energia Eléctrica, quando da ocorrência de grandes perturbações, como por exemplo curtocircuitos, a súbida variação da carga ou a saída de serviço de uma linha de interligação ou de um grupo gerador de potência significativa [1, 2]. A partir dos resultados obtidos pelo estudo da estabilidade transitória é possível conhecer os tempos de actuação das protecções, que garantem que os geradores se mantenham em sincronismo após a ocorrência de qualquer uma das perturbações anteriormente referidas [3].

2. Método das áreas iguais generalizado

O método das áreas iguais generalizado permite estudar o comportamento dinâmico de um Sistema de Energia Eléctrica (SEE), sem necessidade de recorrer às técnicas de integração numérica, que requerem elevados tempos de computação [7]. Desta forma, é possível efectuar estudos de estabilidade transitória em tempo real e obter informações para o controlo preventivo do sistema [6].

O comportamento dinâmico do sistema é definido pelas seguintes equações [3]:

 $M_{i} \frac{\mathrm{d}\omega_{i}}{\mathrm{d}t} = P_{\mathrm{m}i} - P_{\mathrm{e}i}$

$$\frac{d\delta_i}{d\delta_i} = \omega_i \tag{1}$$

i = 1,2,...,m

(2)

95

ELECTRICIDADE Nº 332, ABRIL 1996

onde

$$P_{ei} = E_{i}^{2} G_{ii} + \sum_{\substack{j=1\\ j\neq i}}^{m} E_{i} E_{j} [G_{ij} \cos(\delta_{i} - \delta_{j}) + B_{ij} \sin(\delta_{i} - \delta_{j})]$$
(3)

sendo

- δ_i ângulo rotórico do gerador *i*
- ω_i velocidade angular do gerador *i*
- M_i coeficiente de inércia do gerador *i*
- $P_{\rm mi}$ potência mecânica do gerador i
- P_{ei} potência eléctrica do gerador i
- E_i módulo da força electromotriz do gerador i
- G_{ii} condutância de transferência entre i e j
- B_{ii} susceptância de transferência entre *i* e *j*

Ao simular-se a ocorrência de uma perturbação, os geradores do sistema electro-produtor agregam-se em dois grupos, sendo um o das máquinas críticas (S) e o outro o das restantes máquinas (A).

Com base na formulação do centro de inércia, cada conjunto é agregado, obtendo-se para cada um uma máquina equivalente

$$\delta = M^{-1} \sum M_{1} \delta_{1}$$
 (4)

A equação de oscilação da máquina ligada ao barramento de potência infinita será dada pela seguinte expressão:

$$M \frac{d^2 \delta}{d t^2} = P_{\rm m} - [P_{\rm c} + P_{\rm max} \sin(\delta - \upsilon)] \qquad (10)$$

sendo

M - coeficiente de inércia $P_{\rm m}$ - potência mecânica $P_{\rm c}$ - componente constante da potência eléctrica $P_{\rm máx}$ - valor máximo da potência eléctrica υ - desvio angular

O coeficiente de inércia da máquina equivalente ligada a um barramento de potência infinita é obtido a partir da expressão

$$M = M_{a} M_{s} \left(\sum_{i=1}^{n} M_{i} \right)^{-1}$$
(11)

A potência mecânica da máqina resultante, equivalente a todas as máquinas do sistema é calculada pela equação

s s k∈S K K

$$= M_{a}^{-1} \sum_{j \in \mathbf{A}} M_{j} \delta_{j}$$
 (5)

sendo

96

 δ_s - ângulo da máquina equivalente ao conjunto **S** δ_s - ângulo da máquina equivalente ao conjunto **A**

δ

As equações de oscilação correspondentes às máquinas equivalentes dos dois conjunto são dadas por

$$M_{a} \frac{d^{2} \delta_{s}}{d t^{2}} = \sum_{k \in \mathbf{S}} (P_{mk} - P_{ek})$$
(6)

$$M_{a} \frac{d^{2} \delta_{a}}{d t^{2}} = \sum_{j \in \mathbf{A}} \left(P_{mj} - P_{ej} \right)$$
(7)

O cáculo dos coeficientes de inércia das máquinas equivalentes é obtido a partir dos coeficientes de inércia de cada um dos geradores pertencentes ao correspondente grupo, isto é,

$$M_{\rm s} = \sum_{k \in \rm S} M_{\rm k} \tag{8}$$

$$M_{a} = \sum_{j \in \Lambda} M_{j}$$
(9)

$$P_{\rm m} = \left(\sum_{i=1}^{n} M_{\rm i}\right)^{-1} \left(M_{\rm a}\sum_{k\in\mathbf{S}} P_{\rm mk} - M_{\rm s}\sum_{j\in\mathbf{A}} P_{\rm mj}\right)$$
(12)

Finalmente, aplicando o critério das áreas iguais à equação (10) poder-se-á calcular a margem de estabilidade transitória e o tempo crítico de actuação das protecções. Na figura 1 os intervalos de tempo correspondentes às situações de pré-defeito, durante o defeito e pós-defeito são assinaladas através dos índices "O", "D" e "P", respectivamente.

A partir desta figura poderá calcular-se o valor da margem de estabilidade transitória, tendo em conta as áreas de aceleração e de desaceleração relativas à máquina equivalente:

$$\eta = A_{des} \left(\delta_{e} \right) - A_{ace} \left(\delta_{e} \right)$$
(13)

sendo

 A_{ace} - área de aceleração A_{des} - área de desaceleração

O tempo crítico de actuação das protecções, relativo a uma determinada contingência, é dado pela seguinte expressão:

$$t_{c} = \sqrt{\frac{6 \gamma \alpha^{1}}{\ddot{\gamma}} \pm \sqrt{\frac{36 \gamma^{2} \alpha^{2}}{\ddot{\gamma}^{2}} + \frac{24 \alpha^{-1}}{\ddot{\gamma}} (\delta - \delta_{o})}$$
(14) onde

Reduzido o sistema global a duas máquinas síncronas equivalentes, poder-se-á agora utilizar uma metodologia semelhante ao critério das áreas iguais (Fig. 1).

α - factor de correcção

 γ - aceleração inicial na máquina equivalente ligada a um

barramento de potência infinita

 $\ddot{\gamma}$ - segunda derivada de γ

ELECTRICIDADE N.º 332, ABRIL 1996

CONTROLO DE POTÊNCIA

POWER CONTROL

Fig. 1 - Representação gráfica do critério das áreas iguais generalizado.

Para efeitos de análise da estabilidade transitória do sistema será escolhida a solução da equação (14) que apresentar menor valor numérico [7].

3. Exemplo de aplicação

Foi estudado o comportamento dinâmico do Sistema de Energia Eléctrica representado na figura 2, simulando-se um curtocircuito tripolar na linha L1, com diferentes valores de impedância de arco [8]. No estudo realizado, consideraram--se duas situações de defeitos, correspondentes à ocorrência do curtocircuito nos extremos da linha L_1 , respectivamente junto aos barramentos 1 e 2. Os defeitos foram eliminados ao fim de 0,2 segundos após a ocorrência da perturbação, pela abertura simultânea dos disjuntores da linha L_1 . Nas tabelas 1 e 2 são dadas as características eléctricas dos componentes da rede assumidos neste estudo. Os valores em "por unidade" estão referidos à base de 100 MVA. considerando-se diferentes valores de impedância de arco, utilizando o método das áreas iguais generalizado. Os resultados obtidos são apresentados nas tabelas 4 e 5.

TABELA I Características dos Geradores.

Barramento <i>i</i>	Reactância [p.u.]	Constante de inércia [MJ/MVA]
1	0,25	50,0
2	1,50	1,0

TABELA 2 Características das linhas.

Linha	Barramentos		Resistência	Reactância	Susceptância	
Cr.us	i	j	[p,u]	[p,u,]	[p ,u,]	
L1	1	2	0,02	0,06	0,030	
L2	1	3	0,08	0,24	0,025	
L3	2	3	0,06	0,18	0,020	
L4	2	4	0,06	0,18	0,020	
L5	2	5	0,04	0,12	0,015	
L6	3	4	0,01	0,03	0,010	
L7	4	5	0,08	0,24	0,025	

4. Resultados obtidos e conclusões

Os resultados da situação pré-defeito, obtidos utilizando o método de Newton-Raphson encontram-se na tabela 3.

Posteriormente ao conhecimento do estado inicial do sistema, foi estudado o comportamento dinâmico da rede

TABELA 3Resultados do trânsito de potência.

	Tensão		Produção		Consumo	
Barramento i	Módulo [p.u.]	Argumento [grau]	Potência activa [MW]	Potência reactiv [Muar]	Potencia activa [M]	Potência re ctiv [lur]
1	1,060	0,00	129,6	-7,5	0,0	0,0
2	1,047	-2,81	40,0	30,0	20,0	10,0
3	1,024	-4,99	0,0	0,0	45,0	15,0
4	1,024	-5,33	0,0	0,0	40,0	5,0
5	1,018	-6-15	0,0	0,0	60,00	10,0

TABELA 4

Resultados do método das áreas iguais generalizado: o defeito ocorreu na linha L1 junto ao barramento 1.

Potência de arco [p.u.]	Maguina crítica	Ângulo crítico grau	Temp crítico []	Margem de estabilidade	Condição de estabilidade do sistema	
0,00 + j 0,00	2	63,9	0,192	-0,075	Inståvel	
0.01 + i 0.00	2	66.2	0 194	-0.053	Instavel	

97

ELECTRICIDADE N.º 332, ABRIL 1996

CONTROLO DE POTÊNCIA

POWER CONTROL

TABELA 5

Resultados do método das áreas iguais generalizado: o defeito ocorreu na linha L1 junto ao barramento 2.

Impedância de arco {p.u.}	Máquina crítica	Ângulo crítico [graus]	Tempo crítico [5]	Margem de estabilidade	Condição de estabilidade do sistema
0,00 + j 0,00	2	62,1	0,188	-0,114	Instável
0,01 + j 0,00	2	65,1	0,192	-0,078	Instável
0,02 + j 0,00	2	68,2	0,196	-0,040	Instável
0,03 + j 0,00	2	71,6	0,199	-0,002	Instável
0,04 + j 0,00	2	75,1	0,204	0,037	Instável
0,05 + j 0,00	2	78,8	0,209	0,076	Estável

Para as mesmas situações de defeito e de valores de impedância de arco o sistema foi estudado utilizando o método de integração numérica de Runge-Kutta de quarta ordem [8], tendo-se verificado perfeita concordância entre os valores obtidos pelas duas formulações.

As figuras 4 a 6 mostram as curvas de oscilação dos geradores correspondentes a quatro situações típicas. As situações de contingência a que correspondem as figuras 3 a

Fig. 5 - Curvas de oscilação para um defeito junto ao barramento 2 e uma impedância de arco de 0,01 p.u.

5 conduzem à instabilidade do sistema, enquanto nas figuras 4 e 6 são mostradas situações de estabilidade.

Da análise dos resultados obtidos conclui-se que uma situação instável quando o defeito é franco poderá ser estável desde que a impedância de arco tenha um valor significativo.

Fig. 3 - Curvas de oscilação para um defeito junto ao barramento 1 e uma impedância de arco de 0,01 p.u.

Fig. 6 - Curvas de oscilação para um defeito junto ao barramento 2 e uma impedância de arco de 0,05 p.u.

Referências

[1] Fernando Pires Maciel Barbosa, Estabilidade de Sistemas Eléctricos, Porto, Departamento de Engenharia Electrotécnica e de Computadores de Faculdade de Engenharia da Universidade do Porto, 1987.

[2] José Américo Dias Pinto, Estudo de estabilidade transitória em sistemas eléctricos de energia, Electricidade, Vol. 29 (207) Jan. 1985, p. 34-41.

[3] P. M. Anderson, A. A. Fouad, Power System Control and Stability, New York, Institute of Electrical and Electronics Engineers Press, 1994.

[4] E. Kimbark, Power System Stability Calculations, U.S.A., John Wiley & Sons, 1947.

[5] Carlos Manuel B. Machado Ferreira, José Américo Dias Pinto, Fernando Pires Maciel Barbosa, TRANsySTEM: Um pacote de software para o estudo e análise da estabilidade transitória de um sistema de energia eléctrica, Actas do 2.° Encontro Nacional do Colégio de Engenharia Electrotécnica, Ordem dos Engenheiros, Lisboa, 14-15 Dez. 1995 p. 391-394.

[6] Carlos Manuel B. Machado Ferreira, Análise da Estabilidade Transitória de um Sistema de Energia Eléctrica -Métodos das Áreas Iguais Generalizado, Dep. de Eng. Electr. e de Computadores da Facul. de Eng. da Univ. do Porto, 1995, Dissertação de Mestrado.

e uma impedância de arco de 0,05 p.u.

98

[7] M. Pavella, P. G. Murth, Transient Stability of Power Systems (Theory and Practice), U.K., John Wiley & Sons, 1994. [8] G. W. Stagg, A. H. El-Abiad, Computer Methods in Power System Analysis, McGraw-Hill International Editions, 1968.

ELECTRICIDADE Nº 332 ABRIL 1996