J. Guerreiro Gonçalves, C. Aguiar Cabral Escola Superior de Tecnologia da Universidade do Algarve C. Pereira Cabrita Departamento de Engenharia Electromecânica, Universidade da Beira Interior

Análise da Densidade Linear de Corrente em Actuadores Lineares de Indução m-Fásicos

abstract

The paper presents a generalized method for analysis and calculating the equivalent current sheet in m-phase linear induction actuators, taking the actual machine slotted structure into account. The proposed procedure is corroborated by experimental results obtained from three--phase flat and tubular machines.

número de espiras por fase do enrolamento primário, I o valor eficaz da corrente no enrolamento primário, k, o factor de enrolamento do enrolamento primário, p o número de pares de pólos e τ_1 o passo polar. Por outro lado, as características dos actuadores lineares de indução podem ser obtidas a partir de um esquema equivalente por fase, incluindo os efeitos longitudinal e transversal. Como é sabido, o efeito transversal é contabilizado corrigindo o valor da resistência do secundário por meio do factor de Russell-Norsworthy [2, 3, 4, 6], enquanto que o efeito longitudinal é introduzido naquele esquema equivalente através de uma impedância transversal dependente do escorregamento [4]. Por conseguinte, a força de tracção poderá ser calculada a partir do esquema equivalente, considerando ou não o efeito longitudinal. Para velocidades reduzidas, como sucede com os actuadores lineares de indução, este efeito tem um peso praticamente nulo, podendo assim ser desprezado [1, 2, 3, 4, 6]. Este método que se propõe, e que é suposto ser original, consiste em determinar a distribuição completa, generalizada, da densidade linear de corrente, e introduzi-la no cálculo da força de tracção. As referências [6, 7, 8] apresentam uma análise particular para actuadores lineares trifásicos, com uma, duas e três cavas por pólo e por fase.

resumo

Apresenta-se um método gneralizado de análise e de cálculo das lâminas equivalentes de corrente em actuadores lineares de indução m-fásicos, tendo em atenção a estrutura real da máquina, com cavas e dentes. Este método que se propõe é confirmado experimentamente pelos resultados obtidos nos ensaios de um actuador plano e de dois actuadores tubulares trifásicos.

1. Introdução

No estudo dos actuadores lineares de indução, normalmente realizado em termos das equações do campo electromagnético, a estrutura real do primário, com dentes de cavas onde estão colocados os condutores do enrolamento mfásico, é substituída por uma estrutura lisa, adoptando-se, em lugar do enrolamento distribuído, uma película de corrente de espessura infinitesimal, apresentando uma densidade linear de corrente expressa em A/m. Esta distribuição linear de corrente origina, contudo, a mesma força magnetomotriz do enrolamento distribuído, para que possa haver uma equivalência directa entre a estrutura real e a estrutura fictícia do actuador [1, 2]. De acordo com a teoria convencional da película de corrente equivalente, também designada por corrente linear primária bem como por densidade linear de corrente, é dada por [1, 2, 3, 4, 5]

Por outro lado, Eq. (1) poderá ainda ser reescrita de modo a ser aplicada a actuadores lineares planos e tubulares. Como é sabido [1, 2], J é calculada por meio da seguinte expressão,

amplitude da corrente total ao longo da periferia do actuador - x factor de enrolamento $J_{1} =$ comprimento da periferia do actuador

(2)

63

ou seja,

$$J_{1} = \frac{\sqrt{2mZ_{1}I}}{2p\tau_{1}} \cdot k_{w}$$
(3)

sendo m o número de fases do enrolamento primário, N_1 o

ELECTRICIDADE Nº 342, MARCO 1997

condo

(7)

e para actuadores lineares tubulares,

$$Z_1 = n_c(q.2p) = 2qn_c p$$
 (5)

Virá assim para a Eq. (3) [3]

$$J_{1} = \sqrt{2}mqn_{c}k_{w}\frac{1}{\tau_{1}}I \qquad (6)$$

sendo n_e o número total de condutores por cava e q o número de cavas por pólo e por fase. Nesta expressão, o factor de enrolamento do primário contabiliza a deformação da onda de densidade linear de corrente face à forma ideal sinusoidal, devido às cavas e ao encurtamento do passo do enrolamento. Como se verá de seguida, no método que se propõe o encurtamento do passo do enrolamento, por exemplo, a razão "largura das cavas / largura dos dentes" são grandezas discretas.

2. Análise teórica

A figura 1 esquematiza a estrutura de um actuador linear de indução m-fásico com topologia simples, primário eléc-

sendo $I_{\rm M}$ a amplitude da corrente primária por fase, i = 0, 1,..., 2mq - 1, m e m são respectivamente o número actual e o número total de fases do enrolamento primário, ω é a frequência angular do primário e t representa o tempo. Para se compreender os conceitos de "número actual" e de "número total" de fases, considere-se, por exemplo, um actuador trifásico. Uma vez que esta máquina é trifásica, tem-se $m_{p} =$ 3. Se estiver ligada a uma rede trifásica, então o número acutal de fases será m = 3, mas, se fosse ligada a uma rede bifásica, ter-se-ia m = 2. Na Eq. (7) int representa "parte inteira", e, para actuadores com um número ímpar de fases, tem-se $\alpha = 0$. Para um número de fases m_{o} par, este factor é unitário. Deste modo, a distribuição de densidade linear de corrente resultante para m_p fases, pode ser obtida por análise de Fourier, obtendo-se assim para as amplitudes dos termos em cosseno e em seno, respectivamente, as seguintes expressões.

$$\sum_{k=1}^{n} = \frac{2 n_{c} I_{M}}{k \pi c} \sin \frac{k \pi c}{2 \tau_{1}} \sum_{i=0}^{2mq-1} \inf(\frac{\alpha i}{mq}) \sin \left[\omega t + \frac{m_{p} - 2}{m_{p}} \pi \right]$$
$$\cdot \left[\inf(\frac{i}{q}) + (m_{p} - m) \inf(\frac{i}{mq}) \right] \cos \frac{k \pi (2i+1)}{2 mq}$$
(8)

trico e duplo primário magnético, em que as correntes do enrolamento primário, concentradas nos condutores situados nas cavas, têm a direcção y. As fases do primário representam-se por $L_1, L_2, ..., L_{mp}, c$ é a largura das cavas, e d é a largura dos dentes. O referencial foi escolhido de modo a que a sua origem se situe na extremidade de entrada. A distribuição da densidade linear de corrente, tendo em atenção a estrutura real com cavas e dentes, é representada do seguinte modo:

$$0 \quad \Leftrightarrow \quad (d+c)i \le x < (d+c)i + d$$

$$j_{1}(x) = \begin{pmatrix} 0 & \Leftrightarrow & (d+c)i \le x < (d+c)i + d \\ (-1)^{int(\frac{\alpha i}{mq})} & \frac{n_{c}I_{M}}{c} \sin \left[\omega t + \frac{m_{p}-2}{m_{p}} \pi \right]$$

$$\cdot \left[int(\frac{i}{p}) + (m_{p}-m)int(\frac{i}{mq}) \right]$$

$$\Leftrightarrow \quad (d+c)i + d \le x < (d+c)(i+1)$$

$$b_{k} = \frac{2 n_{c} I_{M}}{k \pi c} \sin \frac{k \pi c}{2 \tau_{1}} \sum_{i=0}^{2mq-1} \operatorname{int}(\frac{\omega}{mq}) \sin \left[\omega t + \frac{m_{p}-2}{m_{p}} \pi\right].$$
$$\left[\operatorname{int}(\frac{i}{q}) + (m_{p}-m) \operatorname{int}(\frac{i}{mq})\right] \cos \frac{k \pi (2i+1)}{2 mq} \quad (9)$$

Virá, assim, para o valor instantâneo da densidade linear de corrente, após considerável manipulação matemática,

$$j_{1}(x) = n_{c} I_{M} \sum_{k=1}^{\infty} [1 + (-1)^{\alpha + k + m}] \frac{\sin \frac{k \pi c}{2 \tau_{1}}}{k \pi c} \cdot \frac{\sin \frac{k \pi}{2 m}}{\sin \frac{k \pi}{2 m q}} \cos \frac{k \pi}{2 m q} S_{k} \quad (10)$$

$$School
= \frac{\cos\left[\omega t + \frac{1 - m}{m_{p}} \pi + \frac{k \pi x}{\tau_{1}} + \frac{k \pi \gamma}{2 m q} - \frac{k - m}{2} \pi\right] \sin\left(\frac{k - m}{2} + \frac{m}{m_{p}}\right) \pi}{\cos\left(\frac{k}{2 m} - \frac{1}{m_{p}}\right) \pi}$$

$$= \frac{\cos\left[\omega t + \frac{1 - m}{m_{p}} \pi - \frac{k \pi x}{\tau_{1}} + \frac{k \pi \gamma}{2 m q} + \frac{k + m}{2} \pi\right] \sin\left(\frac{k + m}{2} + \frac{m}{m_{p}}\right) \pi}{\cos\left(\frac{k}{2 m} - \frac{1}{m_{p}}\right) \pi}$$

e representado k a ordem das harmónicas. Por outro lado, γ é o número de cavas de encurtamento do passo do enrolamento primário. Por exemplo, para um enrolamento de passo fraccionário 7/9, γ é igual a 9 - 7 = 2 cavas. Por sua vez, o factor $(k\pi\gamma / 2mq)$ contabiliza a dependência da densidade linear de corrente do passo do enrolamento, enquanto que o factor $(k\pi c / 2\tau_1)$ introduz a dependância da razão "largura das cavas / largura dos dentes". Uma vez que

ELECTRICIDADE N.º 342. MARÇO 1997

Fig. 1 - Estrutura, com cavas e dentes, de um actuador linear de indução.

64

Fig. 2 - Distribuição da densidade linear de corrente para q = 1 e c/d = 1, para $\omega t = 0$. a) Correntes reais nas cavas. b) Desenvolvimento em série de Fourier até à 47^a harmónica. c) Fundamental e harmónicas de ordem 5^a e 7^a. d) Espectro harmónico.

Fig. 3 - Distribuição da densidade linear de corrente para q = 1 e c/d = 2. Note-se que a distribuição varia ao longo do eixo x, mas o espectro harmónico mantém-se. a) Para ωt = 0. b) Para ωt = π / 2.

65

ELECTRICIDADE N.º 342, MARCO 1997

MÁQUINAS ELÉCTRICAS

Fig. 4 - Distribuição de densidade linear de corrente para q = 3, c/d = 1 e ωt = 0. Note-se que o enrolamento de passo encurtado é mais favorável que o enrolamento de passo inteiro. Note-se ainda o peso das harmónicas 17^a e 19^a. a) Enrolamento de passo inteiro.
 b) Enrolamento de passo fraccionário 7/9.

Fig. 5 - Distribuição da densidade linear de corrente para $at = \pi/2$. Note-se que o actuador com c/d = 10 apresenta um espectro harmónico mais favorável. Na prática, os actuadores planos apresentam valores de c/d aproximadamente iguais a 2, enquanto que um valor de 10 é comum em actuadores tubulares. a) Actuador com q = 1 e c/d = 2. b) Actuador com q = 1 e c/d = 10.

and a superior of the superior

 $n_{\rm e}$ representa o número total de condutores por cava, as situações de enrolamento de simples camada e de dupla camada são ambas contempladas. As figuras 2 a 5 mostram a distribuição da densidade linear de corrente para um actuador linear de indução trifásico ($m_{\rm p} = m = 3$) com 2 pólos, $n_{\rm e} = 100$ e um comprimento de 2,0 m, para $I_{\rm M} = 10$ A, e para vários valores de *c/d* e de *q*, para os ângulos $\omega t = 0$ e $\omega t = \pi /2$. O espectro harmónico é representado tomando como base a amplitude da fundamental, sendo realçadas as seguintes ondas:

- n a distribuição da densidade de corrente, considerando a existência de cavas e de dentes,
- n a onda completa da densidade linear de corrente até à 47^a harmónica,
- n a onda sinusoidal respeitante à fundamental,
- n as ondas sinusoidais respeitantes às 5ª e 7ª harmónicas.

Conforme esperado, quanto mais elevado for o número de cavas por pólo e por fase q, mais sinusoidal será a distribuição ao longo do eixo x.

Para um actuador trifásico, e particularizando o desenvolvimento expresso pela Eq. (10) à fundamental, obtém-se respectivamente,

n Para q = 1:

. π*c*

TABELA 1

Actuador linear plano, simples primário.

Parâmetro	Valor	Unidades
Força para $s = 1, F$	280	N
Frequência, f	50	Hz
Tensão por fase, V_1	231	V
Número de pólos, 2p	8	-
Número de espiras por fase, N_1	800	-
Largura do bloco magnético primário, w	0,070	m
Passo polar, τ_1	0,054	າາ
Número de cavas por pólo e por fase, q	1	-
Largura das cavas, c	12,0	mm
Altura das cavas, h	36,0	mm
Largura dos dentes, d	6,0	mm
Largura da chapa secundária (Al), a	0,120	m
Espessura da chapa secundária, e	3.0	mm
Entreferro, g	4,5	mm

TABELA 2

Acutadores tubulares.

			A PARTY AND A PARTY AND A PARTY AND A
the state of the second state of the	and a second of the second sec	ALTERNATION AND ADDRESS A DEPUTCION OF A DEP	NELA PROPERTY AND AN EVEN PROVE
and the second sec	arametro	President and a second s	TATATA BE DEPARTMENTS
		Contraction and the second s	

$$J_{1} = \frac{6\sqrt{2} n_{c} I}{\pi} \cdot \frac{\sin \frac{1}{2 \tau_{1}}}{c}$$
(12)

Para $q = 3 e \gamma = 0$ (enrolamento de passo inteiro):

$$J_{1} = \frac{18\sqrt{2} n_{c}I}{\pi} \cdot \frac{\sin \frac{\pi c}{2\tau_{1}}}{c}$$
(13)

n Para $q = 3 e \gamma = 2$ (enrolamento de passo encurtado 7/9):

$$J_{1} = \frac{16 2 n_{c} I}{\pi} \cdot \frac{\sin \frac{\pi c}{2 \tau_{1}}}{c}$$
(14)

Conforme se pode constatar, o encurtamento do passo do enrolamento diminui a amplitude da fundamental, como seria de esperar.

3. Resultados experimentais

Para actuadores lineares de indução, destinados a aplicações em regime estático e para baixas velocidades, a força de tracção pode ser determinada pelas seguintes equações, respectivamente para actuadores planos e tubulares [6, 7, 8, 9]

$$F_{\rm p} = \frac{\rho w p J_{\perp}^2 K_{\rm F}}{2 \, s f e \left(1 + \frac{1}{s^2 \, G_{\perp}^2}\right) K_{\rm S}}$$
(15)

			and the state of a lat
Força para $s = 1, F$	17	98	N
Frequência, f	50	50	Hz
Tensão por fase, V	70	231	V
Número de espiras por fase, N_1	1600	1200	-
Passo polar, τ_1	0.0435	0,0435	m
Número de cavas por pólo e por fase, q	1	1	-
Diâmetro do secundário (A1), D	17,5	43,5	mm
Largura das cavas, c	13,0	13,0	៣៣
Largura dos dentes (lâminas de ferro), d	1,5	1,5	mm
Espessura do secundário, e	1,5	1.3	mm
Entreferro, g	4,5	4.5	mm

TABELA 3

Parâmetros do esquema equivalente por fase.

	Actuador	Actuador	Actuador	Unidades
Parametro	plano	tubular	tubular	1
	and the second	4 pólos	3 pólos	
Velocidade de sincronismo, v.	5,4	4,35	4.35	m/s
Coeficiente de Carter, K	1,302	1,489	1,489	-
Factor de Russell-Norsworthy. K	0,754	-	12:00	1.1.
Comprimento medio das bobinas, 1	0,272	0,138	0,242	m
Resistência do primario, R	5,61	20.28	26,66	Ω
Resistência do secundario referida ao		8-270 N		
primario. R.	18,23	45.30	100,87	Ω
Reactância de fungos do primário, X	16,10	11,07	19,43	Ω

67

ELECTRICIDADE N.º 342. MARCO 1997

Fig. 6 - Características teóricas (traço) e experimentais (□) "força de tracção - corrente por fase". a) Actuador plano. b) Actuador tubular com 4 pólos. c) Actuador tubular com 3 pólos.

sendo [2, 3, 4, 6, 9]

68

$$G_{\rm p} = \frac{2 \tau_1^2 \mu_0 f e K_{\rm s}}{\pi \rho K_{\rm c} g}$$
(17)
$$G_{\rm T} = \frac{2 \tau_1^2 \mu_0 f e}{\pi \rho K_{\rm c} g}$$
(18)

$$K_{s} = 1 - \frac{\tanh \alpha}{\alpha (1 + \tanh \alpha \tanh \delta)}$$
(19)

 πw

Fig. 7 - Características teóricas (traço) e experimentais (□) "tensão na linha-corrente pro fase". a) Actuador plano. b) Actuador tubular com 4 pólos. c) Actuador tubular com 3 pólos.

Nestas equações, tem-se, respectivamente: *a*, largura da chapa condutora secundária, no actuador plano; *D*, diâmetro médio do tubo condutor secundário, no actuador tubular; e, espessura do condutor secundário; *f*, frequência de alimentação; G, factor de qualidade de Laithwaite; *g*, entreferro; K_c , coeficiente de Carter; K_F , factor de correcção da força, de Laithwaite; K_s , factor de correcção de Russell-Norsworthy; *s*, escorregamento; *w*, largura do bloco magnético primário, no actuador plano; μ_0 , permeabilidade magnética do vazio; ρ , resistividade do material condutor secundário. O factor K_F foi deduzido na Ref. [9] e depende do factor de qualidade e do número de pólos. Para actuadores com um número par de pólos este factor é unitário, sendo

TABELA 4Valores de J_1 , calculados pelas Eqs. (6) e (12).

Actuadores	$J_{1} (A/m)$ Eq. (6)	$J_{1} (A/m)$ Eq. (12)
Plano	100 566	89 028
Tubular 4 pólos	54 618	47 707
Tubular 3 pólos	124 841	109 044

A figura 6 apresenta a comparação entre as características teóricas e experimentais "força no arranque - corrente por fase" (s = 1) de três actuadores lineares de indução trifásicos dimensionados com base no critério de cálculo optimizado, a partir do factor de qualidade de Laithwaite [2, 3, 6, 7, 8, 9]. No cálculo da força de tracção, a densidade linear de corrente foi determinada a partir da Eq. (12). Como se pode constatar, as aproximações entre as características teóricas e experimentais podem considerar-se boas. As Tabelas 1, 2 e 3 mostram, por sua vez, os parâmetros respeitantes a estes três actuadores lineares.

Finalmente na figura 7 mostram-se as características teóricas e experimentais "tensão na linha - corrente na fase", tendo as características teóricas sido obtidas a partir do respectivo esquema equivalente.

- n Presentemente, as características teóricas "tensão corrente" podem ser obtidas com segurança a partir do esquema equivalente por fase, enquanto que a força de tracção pode ser calculada a partir das Eqs. (15) e (16) com a proposta de se calcular J_1 por meio das equações exactas.
- n A Eq. (6) pode resultar em erros na determinação da força de tracção, como se pode constatar através da Tabela 4, onde se mostra os valores de J_1 , calculados a partir das Eqs. (6) e (12), e respeitantes às correntes nominais dos actuadores ensaiados. Como se pode observar, os resultados obtidos a partir da Eq. (6) são cerca de 1,10 a 1,15 vezes superiores aos que se obtêm usando a Eq. (12). Ora, sendo a força proporcional ao quadrado de J_1 , os resultados que se obteriam para F seriam cerca de 1,21 a 1,32 vezes mais elevados.

REFERÊNCIAS BIBLIOGRÁFICAS

[1] S. Yamamura, *Theory of linear induction motors*, John Wiley & Sons, New York, 1972.

[2] S. Nasar e I. Boldea, *Linear motion electric machines*, John Wiley & Sons, New York, 1976.

[3] C. P. Cabrita, Motor Linear de Indução. Análise Teórica,

4. Conclusões

Com base no método que se propõe, é possível apresentar as seguintes conclusões:

Apesar da distribuição da densidade linear de corrente ser resolvida por meio do desenvolvimento em série de Fourier, o que permite a posteriori analisar a distribuição da f.m.m., pode-se tomar em linha de consideração apenas a componente fundamental, e introduzir o seu valor na equação da força obtida a partir da teoria convencional. Os autores encontram-se presentemente a aplicar o método proposto à determinação e análise quer da f.m.m quer da força de tracção, com a finalidade de se comparar as características obtidas por este processo com aquelas que se obtêm tendo como base a teoria convencional. No entanto, a associação das duas teorias, como ficou provado, conduz a valores seguros para a determinação da força de tracção. Projecto e Ensaio, Dissertação de Doutoramento, IST/UTL, 1988.

[4] J. F. Gieras, *Linear induction drives*, Oxford Science Publications, 1994.

[5] S. Nonaka, *Calculation of equivalent circuit parameters and performance equations of single-sided linear induction motors*, Proc. 1st Int. Symp. on Linear Drives for Industrial Applications LDIA'95 Nagasaki, Japan, 1995, pp. 347-351.

[6] J. G. Gonçalves, Motor Linear de Indução. Modelização e Ensaio, Dissertação de Mestrado, IST/UTL, 1994.

[7] J. G. Gonçalves e C. P. Cabrita, *Linear current density*. *A new method of calculus and analysis*, Proc. 1st Int. Symp. on Linear Drives for Industrial Applications LDIA'95 Nagasaki, Japan, 1995, pp. 389-392.

[8] J. G. Gonçalves e C. P. Cabrita, *The equivalent current* sheet in linear induction motors, Journal ELECTRO-MOTION, Vol. 3, No. 1, 1996, pp. 8-12.

[9] G. F. Nix e E. R. Laithwaite, *Linear induction motors* for low-speed and standstill application, Proc. IEE, Vol. 113, No. 6, June 1966, pp. 1044-1056.

Protecção e Distribuição

A empresa Legrand acaba de publicar um catálogo sobre os produtos LEX1C cerca de "A Protecção e Distribuição de A a Z", um aditivo ao catálogo geral 96/97. São aparelhos modulares, contribuindo para a rapidez de instalação e de manutenção nos quadros de distribuição: parafuso de fenda mista, marcação imediata das associações de funções, facilidade de montagem e auxiliares comuns. Quadros e armários de distribuição com o mesmo equipamento, a mesma largura para simplificar o trabalho dos montadores. Escolha fácil de disjuntores, interruptores, auxiliares de comando e sinalização, blocos diferenciais, relés, interruptor-seccionador, disjuntores magneto-térmicos e diferenciais, sobretensões, repartidores, televariadores, interruptores de alavanca, botões, ralés temporizados, telerruptores, contactores, interruptores horários crepusculares, amperímetros, voltímetros e contadores de energia, sinalizadores, besouros e campaínhas.

69

ELECTRICIDADE N.º 342, MARÇO 1997